
6.3 The Harmonic Oscillator Wave Functions 

Using Equation (6.11) we see that the physically acceptable solutions of Equation (6.9), 

corresponding to the eigenvalues (6.19) are given by 

𝜓𝑛(𝑦) = 𝑒−𝑦2 2⁄ 𝐻𝑛(𝑦) 

Returning to our original variable x, the eigenfunctions corresponding to the discrete 

eigenvalues 𝐸𝑛, given by (6.20), can be written as 

𝜓𝑛(𝑥) = 𝑁𝑛𝑒−𝛼2𝑥2 2⁄ 𝐻𝑛(𝛼𝑥)            𝑛 = 0, 1, 2, … 

𝛼 = √𝑚𝜔 ℏ⁄  

The constant 𝑁𝑛 can be determined by requiring that the eigenfunctions be normalized to 

unity. That is, 
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Using (6.27) we obtain 

𝑁𝑛 = (
𝛼

√𝜋2𝑛𝑛!
)
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So, the normalized harmonic oscillator eigenfunctions are given by 

 

From (6.27), we have 

 

showing that the eigenfunctions are orthogonal. This is in agreement with the fact that the 

energy eigenvalues are nondegenerate. 

We may combine (6.31) and (6.34) by writing 
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…(6.35) 

 

 



showing that the eigenfunctions are orthonormal. 

The lowest four normalized eigenfunctions are: 

    

 

The first four harmonic oscillator wave functions, 𝜓𝑛(𝑥), 𝑛 =  0, 1, 2, 3. The vertical 

lines at  𝑥 = ±𝐴 show the amplitude of a classical oscillator with the same total 

energy. 

 

Note 

• The vertical line in each graph represents the amplitude A of a classical harmonic 

oscillator with the same energy.  

…(6.36) 

 

 



• It is clear that there is some penetration of the wave functions into the regions |x| > 

A that are forbidden classically. This is similar to the effect that we observed for a 

particle in a finite square well. 

• It may be noted that the harmonic oscillator wave functions have a definite parity 

even when n is zero or even and odd when n is odd. 

The Figure below shows the corresponding position probability densities. 

 

 

Probability densities |𝜓𝑛(𝑥)|2 for the first four harmonic oscillator states. The dotted 

curves show the corresponding classical probability densities 𝜌cl. 

Note 

• The (Dashed curves) are the probability densities 𝑝cl for a classical harmonic 

oscillator.  

• Classically, the probability of finding the particle at a point is inversely 

proportional to its speed at that point. As such, 𝑝cl is maximum near the end points 

of the motion, where the particle moves slowly, and minimum near the equilibrium 

position, where it moves fast. 

• It is clear from the figure that for low values of the quantum number n, the 

quantum mechanical probability densities |𝜓𝑛(𝑥)|2 are quite different from the 



corresponding classical probability densities 𝑝cl.  

• In fact, for the lowest energy state 𝑛 = 0, the quantum behavior is exactly 

opposite.  The probability density|𝜓𝑛(𝑥)|2 has its maximum value at the 

equilibrium position 𝑥 = 0 and decreases on either side of this position.  

• However, as n increases the disagreement between the quantum and classical 

probability densities becomes less and less marked. 

 

From the figure note that: 

 The agreement between quantum and classical behaviors as n increases is expected 

because, for large n, the energy interval is small compared to the total energy.  

 This is also in accordance with Bohr’s correspondence principle, which asserts that 

for large quantum numbers, quantum mechanics gives the same results as classical 

mechanics. 

Comparison between the classical and quantum harmonic oscillator 

properties Classical harmonic oscillator Quantum harmonic oscillator 
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inverse proportionality with 

its speed. (𝑝𝑐𝑙 ∝
1

𝑣
) 

 

𝑝𝑞 = |𝜓𝑛|2 for low n 

𝑝𝑞 → 𝑝𝑐𝑙  for large n 

 


